Covering Our Eyes

The main centers of the United States National Aeronautics and Space Administration (NASA) lay like a loose pearl necklace around the coastal edges of the nation.

I’ve never been to any of the NASA sites, but I grew up watching them from a distance.

As a child of the Sixties, the moon launches that took place were an invitation to dream of the stars. They made everything – anything – seem possible. It was just a matter of extending the grasp of our human hands by a finger’s length.

This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. This parallel field — when compared to other deep fields — will help astronomers understand how similar the Universe looks in different directions. Image credit: NASA, ESA and the HST Frontier Fields team (STScI), Acknowledgement: Judy Schmidt Text credit: European Space Agency

This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. This parallel field — when compared to other deep fields — will help astronomers understand how similar the Universe looks in different directions.
Image credit: NASA, ESA and the HST Frontier Fields team (STScI), Acknowledgement: Judy Schmidt
Text credit: European Space Agency

With the passing of time, those dreams of exploration have expanded in unexpected ways. As it turns out, what we don’t know about space is matched in kind by what we don’t know about our home planet.

Or maybe it would be more accurate to say what we don’t know and would like to find about the cosmos runs parallel to what we have chosen not to know, and would rather not find out, about Earth.

We’ve known about human-caused climate impact for a very long time. Even the fossil-fuel industry has known about the effects of its products for longer than any care to admit.

And a rise in sea levels is one of the main effects of a rapidly warming world.

So what to think about the story that many of the most iconic NASA facilities, those stepping stones to understanding our place in the universe and in the environment, are at risk of being submerged by the rising seas of global warming?

NASA and international space agencies around the world provide an array of tools and mechanisms for examining our world as well as others – those first photos of the blue planet bobbing in deep space inspired many to try and protect what turned out to be a rather unique place to live.

Viewed from space, the most striking feature of our planet is the water. In both liquid and frozen form, it covers 75% of the Earth’s surface. It fills the sky with clouds. Water is practically everywhere on Earth, from inside the rocky crust to inside our cells. This detailed, photo-like view of Earth is based largely on observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Caption/Credit: NASA image by Robert Simmon and Marit Jentoft-Nilsen, based on MODIS data.

Viewed from space, the most striking feature of our planet is the water. In both liquid and frozen form, it covers 75% of the Earth’s surface. It fills the sky with clouds. Water is practically everywhere on Earth, from inside the rocky crust to inside our cells.
This detailed, photo-like view of Earth is based largely on observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite.
Caption/Credit: NASA/Robert Simmon and Marit Jentoft-Nilsen, based on MODIS data

Those initial images have been followed by a myriad of eyes that look at our planet in self-examination. In photos, measurements, radar, NASA and its partner agencies have been building an ever expanding archive of information, deepening our understanding of the forces at work here on the surface.

These are visions that aren’t necessarily what I would call the stuff of dreams, but they provide a portal to action in a way that perhaps moon launches didn’t for the average earthbound human.

These are images taken from the perspective of celestials, given to the earthbound. They promote an awareness of what the planet it doing, we are doing and maybe, what we can do it better.

Strong El Nino events have a big impact on phytoplankton (in green), especially when the warm water pushes far to the east of the Pacific Ocean, as in 1997. Credits: NASA/Goddard

Strong El Nino events have a big impact on phytoplankton (in green), especially when the warm water pushes far to the east of the Pacific Ocean, as in 1997.
Caption/Credit: NASA/Goddard

The United States launch pads, were built near coastlines for safety reasons. But latitude plays a role – these are the southernmost regions of the country, and thus closest to the Equator, where “the greater diameter of the planet provides a slingshot effect that gives each rocket more bang for the propulsion buck.” (NYT)

What to say about some of our best technological achievements being inundated by the technologies and habits we can’t seem to quit?

Memory Lane

There’s a large-scale project under way to turn back the clock in order to better prepare for the future.

In Napa Valley, the non-profit San Francisco Estuary Institute (SFEI) has been working to establish the historical ecology of a region that has seen huge landscape use changes over the past two hundred years. It has gone from being from a massive estuary with varied ecosystems to a heavily populated stretch of land famous around the world for its wines, climate and culture.

It has also become less climate resistant and lost a great deal of biodiversity.

 A map, two aerial photos and a land survey showing different stages of the area around the Napa River and the city of Napa, Calif., in (from left) 1858, 1942, 2009 and 1858.  Composite by Ruth Askevold/San Francisco Estuary Institute; from left to right: National Oceanic and Atmospheric Administration, U.S.D.A., U.S.D.A., Courtesy of The Bancroft Library, University of California, Berkeley  Image/caption: New York Times

A map, two aerial photos and a land survey showing different stages of the area around the Napa River and the city of Napa, Calif., in (from left) 1858, 1942, 2009 and 1858.
Composite by Ruth Askevold/San Francisco Estuary Institute; (L to R) National Oceanic and Atmospheric Administration, U.S.D.A., U.S.D.A., Courtesy of The Bancroft Library, University of California, Berkeley
Image/caption: New York Times

The SFEI embarked on the task of establishing just how this key watershed once worked, in all its complexity.

Researchers dug deep into every kind of archive imaginable. From the SFEI site:

The Native Landscape View of the EcoAtlas is a composite picture based upon hundreds of independent sources of data. These include eighteenth- and nineteenth-century maps, sketches, paintings, photographs, engineering reports, oral histories, explorers’ journals, missionary texts, hunting magazines, interviews with living elders, and other sources.

Guadalcanal Mitigation Site, an area restored to tidal influence in 2001. Photo: Gena Lasko (CDFW)/SFEI

Guadalcanal Mitigation Site, an area restored to tidal influence in 2001.
Photo: Gena Lasko (CDFW)/SFEI

The goal isn’t so much to recreate the Napa Valley of the past as it once looked as it is to re-establish the estuary and ecology as they once functioned. To improve the once-lush delta to the point that it can better absorb both flooding as well as withstand drought.

A side effect is the return of some of the wildlife and plants that once lived where there are now vineyards, roads and suburbs.

It’s not as extreme as the de-extinction projects of long-gone animals like Revive and Restore, but it is an attempt to re-invent a future that looks, at least just a little bit, like what went before and was almost forgotten.

Tidal mud in Guadalcanal Mitigation Site. Photo: Sally Mack

Tidal mud in Guadalcanal Mitigation Site.
Photo: Sally Mack

Subterranean Lines

A fracking well at the surface. Photo: Eugene Richards/National Geographic

A fracking well at the surface.
Photo: Eugene Richards/National Geographic

The bulk of the fracking boom currently underway in the United States is not only in one of the least populated and remote states, North Dakota (population 724,000 – and it’s only that large because of the fracking boom and all the new workers there), but it also takes place mostly underground. Sure, there are the ominous towers of gas flames and the torn up ground at the extraction points, but the real action takes place so far beneath the topsoil layer as to render it abstract.

The gap between what fracking looks like from above, and what it looks like from below, reminds me of Antoine Saint-Exupéry’s drawings in The Little Prince. What everyone initially takes to be a sketch of hat is actually a rendering of something completely different, namely, an elephant inside a snake.

From The Little Prince By: Antoine de Saint-Exupéry

From The Little Prince
By: Antoine de Saint-Exupéry

We humans are creatures of visual dependence. Or rather, what we can see tends to make the most conscious impression upon us, ahead of the more subtle senses of sound, taste, smell and touch.

And often, what is out of sight is truly out of mind. If we can’t see it, we have a hard time even thinking about it.

Well locations around New Town, N.D. Source: Fractracker

Well locations around New Town, N.D.
Source: Fractracker

These various maps and renderings of fracking in North Dakota attempt to make the underground activity more tangible, to show us the elephant inside the hat.

Underground fracking lines, drawn from the well, with horizontal underground lines marking the extent of each well. New Town, North Dakota, from Mapping a Fracking Boom in North Dakota. Source: Mason Inman/Wired

Underground fracking lines, drawn from the well, with horizontal underground lines marking the extent of each well. New Town, North Dakota, from Mapping a Fracking Boom in North Dakota.
Source: Mason Inman/Wired

According to Mason Inman over at Map Labs, who created the map above, “Each well travels down about two miles, then turns horizontally and snakes through the rock formation for another two miles. There were 8,406 of these Bakken wells, as of North Dakota’s latest count. If you lined them all up—including their vertical and horizontal parts—they’d loop all the way around the Earth.”

The New York Times took the added step of inverting the wells as if they were above ground, the long vertical drills standing like slender trunks one or two miles high, with only one or two branches of equal length suspended in the air, a high forest of activity.

The area around New Town, North Dakota, from What North Dakota Would Look Like if Its Oil Drilling Lines Were Aboveground Source: Gregor Aisch/NYT

The area around New Town, North Dakota, from What North Dakota Would Look Like if Its Oil Drilling Lines Were Aboveground
Source: Gregor Aisch/NYT